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Abstract

The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular
compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subpro-
teomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale.
Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal
proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that
predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion,
the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii
proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a
cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein,
and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed
on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity
between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics
studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to
underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was
predicted to be targeted to the chloroplast and 15% to the mitochondrion.

Key words: organellar import, transit peptide, MS/MS, Chlamydomonas, algae, chloroplast.

Introduction
With the advent of high-throughput genomics, the determi-
nation of protein function is increasingly reliant on adequate
sequence analysis. Once functional properties of a protein
have been described experimentally, it is generally assumed
that homologous proteins in the same or other organisms

carry out similar or related functions. The functional annota-

tion of genomes thus requires correlating a growing body of

experimental evidence with an exponentially increasing bulk

of sequence similarity data, a daunting task whose result qual-

ity depends on the adequacy of the sequence analysis pro-

grams used. In the case of eukaryotic cells, the presence of
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multiple membrane-bound intracellular compartments adds
another layer of complexity. For example, organisms contain-
ing organelles of endosymbiotic origin (mitochondria and in
plants, plastids) possess machineries for gene expression that
are analogous to those of the nucleocytoplasmic compart-
ment. Since most genes of the endosymbionts have migrated
to the nucleus, the organellar proteins have acquired chloro-
plast and mitochondrial targeting peptides (cTPs and mTPs,
respectively) that are recognized by the import machineries
and direct import to the proper organelle. Sequence analysis
software allowing prediction of intracellular targeting thus
appear as an essential component of the genome annotation
toolbox in eukaryotes (Andersen and Mann 2006; Imai and
Nakai 2010). The goal of this study was to design and to
evaluate such a program for green algae.

Green algae are increasingly recognized as a major source
of biotechnological crops. Their current and predicted appli-
cations range from the production of high-value added com-
pounds such as pigments and polyunsaturated fatty acids to
the photosynthetic production of hydrogen or biodiesel, but
their real future will depend on the genetic engineering of
their metabolic and growth properties (Rosenberg et al. 2008;
Beer et al. 2009). Although a few green algae are classified
together with land plants among Streptophyta, most belong
to Chlorophyta, the sister group of Streptophyta within the
Viridiplantae (green plants) lineage. In recent years, nuclear
genomes have been sequenced for the most primitive
Chlorophyta, the Prasinophyceae (Ostreococcus and
Micromonas), and for the more evolved Trebouxiophyceae
(Chlorella and Coccomyxa). The most evolved branch Chlor-
ophyceae is represented by the genomes of Chlamydomonas
reinhardtii (Merchant et al. 2007), a model organism with
advanced genetics, and of its multicellular relative Volvox
carteri. Because Chlorophyta have diverged from Strepto-
phyta more than 725–1200 MY ago (Becker and Marin
2009), it is not surprising that their organellar import machin-
eries, and their TPs, differ substantially from those of land
plants, so that the prediction programs used for the latter
prove of little precision when used on algal proteins.

The prediction programs developed to date are ontological
localization classifiers based on diverse biological information
input. Most often, this input relies on de novo features
extracted from the primary sequence, mainly detection of a
N-terminal targeting sequence and/or amino acid (AA) or
di-mer, k-mer composition (Reczko and Hatzigerrorgiou
2004). Alternatively, this input can be combined with
motifs or domains co-occurence (Mott et al. 2002; Scott
et al. 2004) and with external data (textual annotations
from homologs; phylogenetic profiles; and biological net-
works) (Emanuelsson 2002; Emanuelsson et al. 2007;
Casadio et al. 2008; Gaston et al. 2009; Imai and Nakai
2010). However, the most popular tools simply use the char-
acteristics of the N-terminal sequence as a proxy for protein
localization. This is because most intracellular targeting signals
(with the exception of nuclear and peroxisomal targeting,
which will not be considered here) are found at the
N-terminus of the preproteins. Proteins routed to the secre-
tory pathway or endomembrane system present an

N-terminal signal peptide that directs the protein to the
translocon of the endoplasmic reticulum (ER). Signal pep-
tides are characterized by a charged N-terminus followed
by a hydrophobic stretch and an AXA sequence, directing
cleavage by the luminal signal peptidase. The N-terminal
transit peptide of mitochondrial proteins (mTP) is recog-
nized by the translocon of the outer envelope membrane
of mitochondria (TOM complex). The TOM complex
hands over the cargo protein to the TIM complex of the
inner membrane, which translocates it to the mitochon-
drial matrix. Similarly, the chloroplast TOC complex recog-
nizes the cTP, whereas the TIC complex finally delivers the
protein to the stroma. Concomitant with import, the TP is
cleaved, generating a new N-terminus, which generally will
be that of the mature protein (Habib et al. 2007; Jarvis
2008; Schleiff and Becker 2011). However, if the protein
is destined to an intraorganellar membrane system (mito-
chondrial inner membrane or thylakoids), it undergoes
two-step targeting. A second signal peptide-like sequence
follows the TP immediately after the cleavage site. Once
the TP is cleaved off, this second sequence will be recog-
nized by the intraorganellar membrane translocation ma-
chineries and cleaved off to generate the eventual mature
N-terminus of the protein, unless it is retained and serves
to anchor the protein to the membrane.

Efforts to identify a consensus from the signal and m/cTP
sequences, or typical patterns of secondary structures pro-
duced only general tendencies but did not provide explicit
prediction rules (Habib et al. 2007; Zybailov et al. 2008;
Huang et al. 2009). Thus attention turned to data-driven ma-
chine learning techniques such as neural networks, Hidden
Markov Models, and support vector machines (Schneider and
Fechner 2004; Shen et al. 2007). These algorithms learn em-
pirical information from a set of known examples (namely a
training set, comprising in our case an input set of sequences
and a related output set intracellular localizations) and make
a decision by extrapolating this information to unknown
examples. Basically, these general-purpose estimators rely
on numerical optimization of the parameters, which govern
their constitutive elementary functions, with “learning”
methods (parameter tuning to minimize differences between
algorithm outputs and outputs from the training set) that
depend on their mathematical properties. Neural networks
are commonly used in a broad range of applications as they
have the capacity to approximate any kind of linear or non-
linear relationship yet are parsimonious in the number of
parameters needed to achieve a given precision (Fu 1994).
From the above, it is clear that the outcome of a
machine-learning process depends heavily on the quality of
the training set: it must be extensive, so as to fully capture the
diversity of the sequences used, accurate to avoid mixing
signals in the input, and balanced so as to represent the var-
ious targeting signals in proportion of their occurrence in the
proteome to be analyzed. Furthermore, it must be adequate
for the organisms in which one wishes to predict targeting.
For example, several programs are available that provide
robust predictions for land plants (TargetP, Predotar)
(Emanuelsson et al. 2000; Small et al. 2004), including
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prediction of the cleavage site (ChloroP) (Emanuelsson et al.
1999). Yet, they are notoriously unreliable when used to pre-
dict the localization of algal proteins (Franzén et al. 1990;
Patron and Waller 2007; Atteia et al. 2009; Terashima et al.
2010; Bienvenut et al. 2011).

We therefore felt it necessary to develop a new algorithm
with the specific aim of predicting targeting in green algae.
We have chosen C. reinhardtii as the source of our training
sequences because it is the only green alga that can provide
the necessary breadth of high-quality experimental data. The
initial genome annotation has been largely curated by experts,
and a new structural annotation incorporating a vast array of
pyrosequencing cDNA data has been generated using the
Augustus program (Stanke et al. 2006). A panel of both
large- and small-scale proteomics studies have explored the
composition of Chlamydomonas organellar subproteomes
(for reviews Stauber and Hippler 2004; Rolland et al. 2009;
Wagner et al. 2009; Terashima et al. 2011). Comprehensive
surveys of whole mitochondrion and chloroplast organelles
have been performed by Atteia et al. (2009) and Terashima
et al. (2010), respectively. As a result, a vast inventory of chlo-
roplast and mitochondrial proteins is available, some corrob-
orated by multiple biochemical and functional studies.
Because we needed the cleavage site information to define
the boundaries of the TPs, we systematically searched the
tandem mass spectrometry (MS/MS) data for semitryptic
peptides identifying the mature N-terminus. The resulting
program, PredAlgo, outperformed any other software in dis-
criminating chloroplast from mitochondrial proteins in C.
reinhardtii, and is applicable to other green algae.

Results and Discussion

Building Training Sets

This study aimed at implementing a tool capable of classifying
the C. reinhardtii proteins into three pertinent compartments:
the chloroplast (“C”), the mitochondrion (“M”), and the
secretory pathway (“SP”). When no presequence was recog-
nized, the Other (“O”) localization would be assumed as our
fourth output. To build our training sets, we exploited differ-
ent sources of evidence (fig. 1A). To avoid false assignments,
we applied stringent criteria to validate the cleavage site, the
gene model, and the localization of the protein (details are
provided in supplementary protocols, Supplementary
Material online). Our strategy was to retain only proteins
for which these were known beyond reasonable doubt.

The main source of the “chloro” and “mito” training sets
was the identification of N-terminal peptides obtained by
database-driven interpretation of MS/MS spectra collated
from previous studies (Atteia et al. 2009; Terashima et al.
2010). For mitochondria, we supplemented the study of
Atteia et al. (2009) with data from an additional mitochondria
preparation specifically targeting N-terminal peptides. A total
of �41,000 MS/MS spectra from mitochondria were pro-
cessed into Mascot "semi-tryptic" searches (see Materials
and Methods). Not to miss any detectable N-terminal pep-
tides, we applied a low score threshold of 20 for the
first-round automatic validation, but each semitryptic

match was then validated by individual expert examination
of the spectrum. Thirty-five proteins were identified in the
data of Atteia et al. (2009), and an additional eight were re-
trieved from the N-termini enriched sample (supplementary
table S1, Supplementary Material online). The first set was
scanned for the presence of native (N)-acetylation, which was
found in only three proteins out of 35, consistent with the low
level of N-acetylation found in plant mitochondria (Huang
et al. 2009). This observation contrasted with the 30–40%
level of (N)-acetylation found in stromal chloroplast proteins
in plants (Zybailov et al. 2008) or in Chlamydomonas (Bienvenut
et al. 2011). Atp2 was represented by two peptides starting at
positions 26 and 27, suggesting that cleavage can occur at more
than one position or proceed through close sequential steps
(Zybailov et al. 2008; Vogtle et al. 2009). For the chloroplast,
we used the 111 N-terminal peptides collected by Terashima
et al. (2010) and validated them in a similar manner.

Literature and database searches allowed us to add a
number of N-terminal sequences, usually determined by
Edman chemical sequencing and occasionally by MS/MS
(Yamaguchi et al. 2003; Turkina et al. 2006). This approach
yielded N-terminal sequences for 41 chloroplast and 28 mi-
tochondrial proteins (of which 12 were already in our
MS/MS-derived set). It also turned up five proteins targeted
to the secretory pathway. To complete the “SP” set, addi-
tional sequences were collected based on annotation, in
which case the N-terminal sequence was chosen as that pre-
dicted by SignalP with a high confidence score. Uncleaved
cytosolic proteins (forming the “cyto” set) were collected
mostly based on an annotation that precluded
organellar or SP location, to which we added uncleaved pro-
teins identified as cytosolic contaminants in the mitochon-
drion survey.

At this stage, and disregarding the confidence in the iden-
tified cleavage site, several proteins were withdrawn from the
training sets because doubt remained as to the validity of the
protein sequence (depending on the gene model version), the
intracellular localization or the nature of the cleavage event
(“Discarded” proteins in supplementary table S1, Supplemen-
tary Material online, and proteins in supplementary table S3,
Supplementary Material online). In particular, 22 chloroplast
lumenal proteins and 7 mitochondrial proteins, which un-
dergo two-step targeting, were excluded at this stage because
their N-terminus does not correspond to the cleavage site of
the TP but reflects the later elimination of the intraorganellar
sorting peptide. It is therefore not possible to infer from these
candidates the proper organellar sorting sequences (that is
c/mTPs). However, they were retained for testing the accu-
racy of the sorting prediction, as both their gene model and
final localization were known with certainty (supplementary
table S3, Supplementary Material online). The final validated
sets are described in figure 1B and supplementary table S2,
Supplementary Material online, based on their source. The
“chloro,” “mito,” “SP,” and “cyto” sets comprise 79, 37, 39,
and 83 entries, respectively (fasta files are downloadable from
the ProteHome portal). Supplementary table S2,
Supplementary Material online, lists information about the
cleavage site and the gene models.
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Characteristics of the Presequences

In our training sets, the mean length of cTPs was 41 (�18)
AA, that of mTPs 38 (�21). Signal peptides were markedly
shorter (26� 8). The mean length of mTP was in accordance
with that reported in plants and animals (34� 16 residues)

(Emanuelsson et al. 2000). On the other hand, the
mean cTP length in C. reinhardtii appeared shorter than
in land plants (57� 23 residues) (Emanuelsson et al. 2000),
a tendency which was also observed by Bienvenut et al.
(2011).

FIG. 1. Training sets. (A) Workflow for collecting proteins with a known targeting cleavage site. (B) Origin of the sequences in training data sets: (green)
N-terminus determined by “semi-tryptic” survey of MS/MS data; *cytosolic proteins whose N-terminus was matched by an experimental peptide in the
mitochondria survey MS/MS data; (orange) N-termini mined from literature; (yellow) keyword datamining (Uniprot/JGI annotations) and Signal-P
analysis.
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Figure 2 presents WebLogos around the cleavage site for
cTPs and mTPs, comparing the Chlamydomonas training sets
(left panel) with the TargetP sequences sets (right panel). The
“Plant”-version of TargetP sets excluded algal sequences and,
for the mTPs, included animal sequences (Emanuelsson et al.
2000). In both cTPs and mTPs positively charged residues
were abundant (R), in accordance with previous suggestions,
whereas negatively charged acidic residues were rare.
Compared with the land plant-dominated sets used to
train TargetP, the Chlamydomonas TPs showed a slightly
higher frequency of hydrophobic residues (L, A, V, and F).
The “chloro” C. reinhardtii logo highlighted amino acids pref-
erences in three regions: R and S at�9/�8; A, V, and R at�5
to �1; and A and S at +1/+2. The predominance of the
motif V[RAV]A in positions �1 to �3 (which was
early pointed out as V-X-A by Franzén et al. 1990) suggests
that it may be the consensus sequence directing cleavage
by the Stromal Peptidase. The “mito” C. reinhardtii
logo highlighted preferences at positions +1[A] and posi-
tions-3[R]-2[AR]-1[F]. Similar preferences were present in
the corresponding plants logos, but their prevalence was
less marked.

To check for the presence of conserved motifs in the
chloro and mito sets, we submitted the N-termini (up to
residue 10 of the mature sequence) to MEME analysis
(Bailey and Elkan 1994). For the chloroplast targeting se-
quences, a loosely conserved motif of 13 residues was
found, which was best approximated by the expression
[RS]R[RS][AS][VL]VVRA[AS]AxP (supplementary fig. S1,
Supplementary Material online). Remarkably, best matches
of this sequence within the N-termini of the chloroplast
database appeared generally located at the C-terminal
region of the transit peptide, with 73% of TP ends falling

between positions 8 and 10 of the best motif match. This is
accordance with the positional preferences depicted in the
Weblogo. For the mitochondrial targeting sequences, a
shorter and even less conserved motif of 11 residues was
found ([GA]VRAFA[TA]AAAx). Its best matches in the
N-termini also appeared generally located near the end of
the mTP, with 67% of TP ends comprised between positions
4 and 8 of the best match. Still, many hits had a low score, so
that motif search does not appear as a suitable tool to identify
cTPs and mTPs.

Secondary structures predictions were computed with
Psipred and are shown in supplementary figure S2, Supple-
mentary Material online (35 residues on each side of the
cleavage site). No single feature appeared capable of distin-
guishing cTPs from mTPs. In approximately half of the cTPs, a
�-strand was predicted immediately upstream of the cleavage
site (Chloro-A panel), a feature previously reported for
A. thaliana cTP (von Heijne et al. 1989) and a few C. reinhard-
tii examples (Franzén et al. 1990). However, many other cTPs
sequences did not exhibit this particular �-strand (Chloro-B
panel) (see also von Heijne and Nishikawa 1991; Theg and
Geske 1992). No proximal �-strands appeared in the mTPs
where �-helical predictions dominated (58% vs. 32% in cTPs).
However, this feature in itself does not appear very discrim-
inatory (compare with the Chloro-B panel). In contrast, signal
peptide sequences showed a pronounced enrichment in he-
lical prediction over the hydrophobic region (72% “H”) as
expected. Altogether, these results, while showing interesting
tendencies in the primary and secondary structure of the
transit peptides, highlighted the need for a more general
way of extracting the targeting information underlying
these sequences.

FIG. 2. Weblogos around the cleavage site of transit peptides. Weblogos were built with the Weblogo 3.1 application encompassing 10 residues each
side of the cleavage site. Weblogos for C.reinhardtii were set up with the training chloroplast and mitochondrial data sets. For comparison with higher
plants, Weblogos were also computed with the Plant (“Non-algal”) sets downloaded from the TargetP site (http://www.cbs.dtu.dk/services/TargetP).
The color code is according to amino acids chemical properties: green, polar amino acids (G,S,T,Y,C); purple, neutral (Q,N); blue, basic (K,R,H); red, acidic
(D,E); and black: hydrophobic (A,V,L,I,P,W,F,M). Total number of sequences in each set is indicated in parentheses.
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Neural-Network-Based Prediction of Targeting in
Chlamydomonas

The first 150 amino acids of the training set sequences were
decomposed into 19-residue subsequences (total number
30,603), which were used to train feedforward neural net-
works using SNNS software. Each subsequence was associated
with an output triplet describing whether it is part of a tar-
geting peptide. After various trials, a 3-layer network was re-
tained (an input layer with 19� 26 nodes, a hidden layer with
19 nodes, and an output layer with 3 nodes), with learning
rate set to 0.02, minimal error set to 0.01, and shuffling mode
activated. With this design, the optimal learning time was
determined by using 80% (randomly extracted) of the subse-
quences pool as training set and the remaining 20% as test set.
Minimal sum of squared errors (SSE) on the test set, indicating
that the learning process reached an optimal point in terms of
prediction efficiency was found to occur between 100 and
150 iterations depending on the part chosen to detect over-
learning. Therefore, for the final learning process, we used the
whole training database with 130 iterations. The resulting
network is the core of PredAlgo (version 1.0).

Thereafter, we derived a triplet score for any given protein
by combining the results of network outputs for the 50 suc-
cessive subsequences defined by sliding a 19-residue window
from the N-terminus (see Materials and Methods). As ex-
pected, proteins of the training set obtained highly discrimi-
nating scores: typically all scores were below 0.2 for cytosolic
proteins, whereas for proteins with specific localization the
corresponding score was above 1. To check whether our ap-
proach was efficient outside the training set, we calculated
scores triplets for all sequences in an independent benchmark
set (available at the ProteHome website) consisting of
C. reinhardtii proteins for which subcellular localization was
known but that were not part of the training set. For each
protein, the highest value in the triplet was retained to indi-
cate potential targeting. Cutoff scores under which proteins
were sorted into the “other” category were then empirically
adjusted on the benchmark set. The cutoff was lower
for SP sorting (0.14, vs. 0.41 and 0.42 for chloro and mito,
respectively), consistent with the fact that SP signals are
shorter.

The benchmark set was further used to evaluate the per-
formances of the program and compare them to those of five
publicly available multisites prediction programs (TargetP,
Predotar, Protein Prowler, WoLF PSORT, and MultiLoc2).
Table 1 presents, for each program, the confusion matrices
and the resulting sensitivity, precision, accuracy, and Mat-
thews correlation coefficient (MCC) values (see Materials
and Methods). The sensitivity (or recall) reflects the capacity
of a predictor to correctly identify as many proteins as pos-
sible among those targeted to one specific localization. The
precision reflects to which extent a predicted compartment is
free of contamination by proteins from other compartments.
The accuracy that takes into account all four results categories
(true positive, true negative, false positive, and false negative)
reflects more global correctness. The MCC in addition atten-
uates the bias due to the different sizes of the benchmark sets.

Our results confirmed the notion that currently available
predictors are not appropriate to algal proteins. The main
weakness of TargetP, Predotar, and ProteinProwler resided
in the fact that they largely mistargeted chloroplast proteins
toward the mitochondrion, resulting in low sensitivity for the
chloroplast and low precision for the mitochondria. TargetP,
Predotar, and ProteinProwler were all trained with N-terminal
targeting sequences as exclusive input information and are
based on neural networks (recurrent network for Protein
Prowler). Noticeably, TargetP and Predotar excluded algal
proteins from their training data sets and the mTP training
set of the “Plant” version of TargetP included a majority of
nonplant sequences (22% yeast, 16% human, etc). The train-
ing sets of ProteinProwler were the same as of TargetP.
WoLFPSORT and MultiLoc2 are built on different kinds of
learning systems (k-nearest-neighbor for WoLFPSORT and
support vector machine for MultiLoc2) and were trained
using diverse inputs consisting not only of N-terminal sorting
peptides. For these two programs, sensitivity for the “Chloro”
class (68% and 75%, respectively) was clearly better than with
the other three predictors, but they often confused plastid
and mitochondrial proteins in reciprocal ways and could not
be considered satisfactory. Of all the programs tested,
WoLFPSORT had the worst overall metrics.

In comparison, PredAlgo produced a better targeting pre-
diction, achieving the best overall results of all predictors.
Most importantly, it had the best metrics for the chloroplast
and mitochondrial proteins, except for mitochondrial sensi-
tivity, which was slightly better with Protein Prowler. The
highly improved discrimination between the chloroplast
and mitochondrial localization prediction is reflected by the
achievement of 85% sensitivity for the chloroplast and of 72%
precision for the mitochondrion. The discriminating power
between these two compartments is even better reflected by
the MCC values, which were fairly improved (0.77 “chloro”
and 0.69 “mito”).

For cytosolic proteins, PredAlgo behaved similarly to the
best of the other programs, Protein Prowler. As expected,
PredAlgo provided no particular improvement for the “SP”
prediction since our SP training set was based on SignalP-
predicted cleavage sites. In fact, PredAlgo performed exactly
like SignalP on our benchmark set (accuracy and MCC were
0.92 and 0.69, respectively, for both predictors, not shown).

Estimation of TP Length

We then endeavored to determine whether PredAlgo output
could be used to estimate TP lengths. As Signal-P gives good
estimates for the SP compartment, we limited ourselves to
the M and C compartments. We used the step–ramp-shaped
curve of the score outputs in the N-terminal part of the
protein. Precisely, when presence of a transit peptide was
detected, the corresponding TP score was plotted along the
N-terminus of the sequence and fitted by a function of the
following shape: threshold-decreasing ramp-zero (supple-
mentary fig. S3A, Supplementary Material online), which ide-
ally should intercept zero at the end of the TP. To validate this
procedure, we applied it to our training set for which TP
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length was known with precision (supplementary fig. S3B and
C, Supplementary Material online). In the majority of cases,
the estimates were comprised within � 10 amino acids from
the actual TP termination, indicating that it might be used to
give an indicative range for TP length but cannot be used as a
reliable means of identifying cleavage site. We therefore advise
the user to run the N-terminal part of the protein through a
motif search (programs MAST or FIMO in the MEME suite)
using the motifs described around the cleavage site (supple-
mentary fig. S1, Supplementary Material online; the motifs in
MEME format are downloadable from the ProteHome web-
site) to refine the PredAlgo estimation.

Application to the Whole C. reinhardtii Proteome
Prediction of Subcellular Proteomes in Chlamydomonas
PredAlgo was run on the best currently available annotation
of Chlamydomonas nuclear-encoded proteins, Aug10.2. For
comparison and reference, we also ran it on previous anno-
tations: Joint Genome Institute (JGI)-v3, -v4, Aug5, and Aug9
(complete predictions sets are downloadable from the
ProteHome portal). Global statistics (table 2) indicate the
following distribution: 18% of the proteins appear directed
to the chloroplast, 15% to the mitochondrion, 15% to the
secretory pathway, and 52% to other localizations. Overall,
the proportion of “Other” localizations appears slightly
lower than in Arabidopsis thaliana, where AtSubP, an Ath-
dedicated localization tool predicted 11% of the proteins to
the chloroplast, 12% to the mitochondrion, 16% to the secre-
tory pathway, and 61% to other localizations (Kaundal et al.
2010). Notwithstanding the larger number of genes in the
Arabidopsis genome, the numbers of chloroplast proteins
end up strikingly similar in the alga and the land plant
(3,157 and 2,897, respectively). This suggests that the

enhanced gene repertoire associated with terrestrial life
is associated mostly with nonchloroplast functions, the
chloroplast serving essentially as the central energetic
and metabolic production unit of the cell, with relatively
few opportunities to acquire new functions through
evolution.

A quick survey of the annotation of the Chlamydomonas
subproteomes reveals interesting differences with the land
plants in the compartmentation of the enzymes of central
metabolism (such issues are reviewed in Terashima et al.
2011). We analyzed the set of central metabolism reactions
that are taken into account in the work by Boyle and Morgan
(2009) completed with the ChlamyCyc pathway database
(http://chlamyto.mpimp-golm.mpg.de/chlamycyc/index.jsp)
(May et al. 2009) and found that in many cases, PredAlgo
predicted a different localization from that given by the au-
thors. Such discrepancies originate from several sources: in-
correct gene models (Boyle and Morgan used JGI-v4
predictions), errors in prediction, ambiguous targeting, homo-
logs with different localizations, etc. (supplementary table S4,
Supplementary Material online). For some cases such as
GOGAT localization, the discrepancy is clearly linked to
gene model: this enzyme is undoubtedly chloroplastic, but
the gene model in JGI-v4 is lacking the N-terminal signal
peptide, which is found in Aug10.2. For Indole-3-glycerol-
phosphate synthase, no targeting signal can be detected in
the protein referred by previous works, but a homolog in the
genome with a strong chloroplast N-terminal signal score
could well be the good candidate for the actual chloroplast
enzyme. These examples show that the availability of a reliable
localization tool, combined with continued improvement of
gene models, is potentially a precious help in metabolic net-
work reconstruction.

Table 1. Performance of PredAlgo Compared with Other Prediction Programs.

Prediction Metrics Prediction Metrics

C M SP O Sensitivity Precision Accuracy MCC C M SP O Sensitivity Precision Accuracy MCC

PredAlgo 1.0 TargetP

Chloro (240) 204 9 2 25 0.85 0.88 0.89 0.77 (240) 95 117 4 24 0.40 0.86 0.72 0.44

Mito (75) 9 55 4 7 0.73 0.72 0.93 0.69 (75) 7 53 4 11 0.71 0.25 0.69 0.28

SP (91) 5 7 60 19 0.66 0.82 0.92 0.69 (91) 4 18 54 15 0.59 0.78 0.91 0.63

Cyto (171) 13 5 7 146 0.85 0.74 0.87 0.70 (171) 5 21 7 138 0.81 0.73 0.86 0.67

Total (577) 231 76 73 197 0.76 0.77 0.87 0.66 (577) 111 209 69 188 0.59 0.73 0.79 0.51

WoLF PSORT P.Prowler

chloro (228) 155 52 2 19 0.68 0.53 0.61 0.23 (240) 58 156 4 22 0.24 0.84 0.66 0.32

Mito (70) 51 13 0 6 0.19 0.16 0.77 0.04 (74) 7 57 2 8 0.77 0.23 0.65 0.27

SP (72) 47 1 14 10 0.19 0.78 0.88 0.35 (91) 2 8 65 16 0.71 0.86 0.94 0.75

Cyto (165) 39 13 2 111 0.67 0.76 0.83 0.60 (171) 2 22 5 142 0.83 0.76 0.87 0.70

Total (535) 292 79 18 146 0.55 0.59 0.74 0.34 (576) 69 243 76 188 0.56 0.74 0.77 0.49

MultiLoc2 Predotar

Chloro (240) 179 38 5 18 0.75 0.70 0.76 0.51 (240) 51 110 3 76 0.21 0.81 0.65 0.28

Mito (75) 37 25 6 7 0.33 0.28 0.80 0.19 (75) 5 48 4 18 0.64 0.27 0.72 0.27

SP (91) 18 1 56 16 0.62 0.73 0.90 0.61 (91) 2 7 60 22 0.66 0.82 0.92 0.69

Cyto (171) 22 25 10 114 0.67 0.74 0.83 0.58 (171) 5 15 6 145 0.85 0.56 0.75 0.52

Total (577) 256 89 77 155 0.65 0.66 0.81 0.51 (577) 63 180 73 261 0.53 0.67 0.73 0.41

NOTE.—Performance was evaluated on the benchmark set. Numbers in parentheses indicate the number of benchmark proteins actually considered. The first four columns depict
the prediction counts for proteins in each category (confusion matrices). C, chloroplast; M, mitochondrion; SP, secretory pathway; and O, other localization. The next four
columns display the computed metrics used for the performance comparison. MCC, Matthews correlation coefficient. For each metric, the highest value among all programs is
shown underlined and the lowest are in italics.
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Comparison of PredAlgo Predictions with the Results of

Proteomics Studies
Several extensive MS/MS proteomics data sets are available
that describe the Chlamydomonas chloroplast and mitochon-
drial proteomes (Atteia et al. 2009; Terashima et al. 2010;
Bienvenut et al. 2011). These experimental studies provide
a good basis for testing our algorithm, independent of our
benchmark set. These studies, however, carry their own lim-
itations, in particular the chloroplast and mitochondrial frac-
tions they used unavoidably contained various proportions of
contaminating proteins from other compartments. This has
been recognized by the authors, who provide lists of chloro-
plast/mitochondrial proteins considered as certain, separate
from those that are unsure (or probable contaminants).

We first compared the lists of chloroplast proteins from
these studies with the list predicted by PredAlgo. Of the 101
gene models (Augustus 9) identified by Bienvenut et al. as
undoubtedly chloroplast localized, 90 were indeed predicted
as chloroplast targeted by Predalgo (based on the improved
Aug10.2 models) and 11 were addressed to other compart-
ments (supplementary table S5, Supplementary Material
online). This represents a very satisfactory fit, much better
than that obtained with TargetP (only 39 predicted as plas-
tidial). In contrast, when we analyzed proteins whose chloro-
plast localization had been recorded as unsure by Bienvenut
et al. (116 proteins), we found 78 predicted as targeted to the
chloroplast versus 38 to other compartments, suggesting that
indeed many of the latter were contaminants. In Terashima’s
study, a larger number of proteins were presented as being
localized to the chloroplast with a distinctive “safe” and “can-
didate” localization confidence (based on MS spectral
counts). From this list, we could extract a list of 850
chloroplast-targeted proteins with known JGI v4 identifiers
(supplementary table S6, Supplementary Material online).
PredAlgo classified 543 of them (64%) as chloroplast targeted.
Again, the recovery is much better than that of TargetP (24%
after v4-update). When considering only the “safe” proteins,
the recovery by PredAlgo was of 72% (409/565).

We also analyzed the list of mitochondrial proteins pub-
lished by Atteia et al. (2009). This list comprised 344
nuclear-encoded expertized proteins of which 256 could be
classified in a functional category. From this reduced set,
PredAlgo displayed a sensitivity of 40% (102 “M” prediction
out of 256) similar to that of TargetP (112/256, 44%)

(supplementary table S7, Supplementary Material online).
This was not surprising, in view of the similar mitochondrial
sensitivities of the two programs (table 1). Interestingly, from
the set of 143 proteins identified as “contaminants” (mostly
cytosolic), only four proteins were sorted into the mitochon-
drion by Predalgo (vs. 26 by TargetP), highlighting that the
advantage of PredAlgo in this context is its better precision.
From its ability to correctly match such large-scale
subproteome studies, PredAlgo appears as a reliable tool to
predict protein targeting in the absence of experimental data.

Targeting without a Cleavable Presequence
Some of the discrepancies between PredAlgo predictions and
experimental localization are due to incorrect gene models,
others to limitations of PredAlgo that is not able to recognize
all TPs correctly. Some, however, could be due to mitochon-
drial or plastidial proteins lacking a cleavable N-terminal se-
quence and being imported uncleaved, by a nonconventional
mechanism. We show in supplementary table S8, Supplemen-
tary Material online, a list of C. reinhardtii mitochondrial and
chloroplast proteins known or suspected to lack a cleavable
presequence. This includes proteins for which the MS/MS
analysis suggested either total absence of cleavage or simple
removal of the initiator Met.

In mitochondrion, the final destination of such proteins
could be the outer membrane, the inner membrane, the
intermembrane space, the matrix, or altogether unknown
(29 proteins in supplementary table S8, Supplementary
Material online). As expected, PredAlgo classified most of
them in the “Other” output (22 out of 29). Uncleaved
N-terminal sequences and internal targeting signals have
been proposed to account for such unusual import processes
(Wiedemann et al. 2004; Paschen et al. 2005; Bohnert et al.
2007; Habib et al. 2007). The matrix protein chaperonin 10
(CPN10) annotated with an “SP” presequence by PredAlgo
may in fact have an unconventional uncleaved N-terminal
mTP, as reported for CPN10 homologs (Rospert et al. 1993;
Jarvis et al. 1995). Similarly, presequence-independent target-
ing might account for some of our results on plastid proteins.
CP29 (=Lhcb4) is one of the well-characterized chloroplast
proteins that were not detected as such by PredAlgo. In
C. reinhardtii, this abundant thylakoid protein has been
found to lack a cleavable presequence (Turkina et al. 2004).
The related CP26 (=Lhcb5) is also suspected to be imported
uncleaved (Turkina et al. 2006), but PredAlgo predicted that

Table 2. Statistics of PredAlgo Predictions on Whole C. reinhardtii Proteome.

Version Total Entries Chloro (%) Mito (%) SP (%) Other (%)

Aug10.2 17,114 3,157 (18.4) 2,615 (15.3) 2,596 (15.2) 8,746 (51.1)

JGI v4 (“best”) 16,709 2,960 (17.7) 2,520 (15.1) 2,648 (15.8) 8,581 (51.4)

Aug5 16,888 2,804 (16.6) 2,545 (15.1) 2,472 (14.6) 9,067 (53.7)

Aug9 15,935 2,597 (16.3) 2,380 (14.9) 2,300 (14.4) 8,658 (54.3)

JGI v3 (“best”) 14,598 2,455 (16.8) 2,064 (14.1) 2,248 (15.4) 7,831 (53.6)

NOTE.—PredAlgo was run on the whole (nuclear) genome-encoded Chlamydomonas proteome. Files from different versions were used, which provide only one model sequence
per locus (supposedly and so-called the “best” model for the JGI versions): (JGIv3) “proteins.frozen_GeneCatalog_2007_09_13.fasta,” (JGIv4) “Chlre4_best_proteins.fasta,” (Aug5)
“Chlre4_Augustus5_proteins.fasta,” (Aug9) “augustus.u9.aa,” and (Aug10.2) “Creinhardtii_169_peptide.fa.” The percentage values indicate the relative size of each localization
output. The whole sets of predictions are provided at http://www.grenoble.prabi.fr/protehome/.

3632

Tardif et al. . doi:10.1093/molbev/mss178 MBE
 at IN

IST
-C

N
R

S on D
ecem

ber 17, 2012
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://mbe.oxfordjournals.org/cgi/content/full/mss178/DC1
http://www.grenoble.prabi.fr/protehome/
http://mbe.oxfordjournals.org/


it has a cTP, albeit with a weak score (Cscore 0.519). A few
cases of uncleaved proteins were also reported from a chlo-
roplast stroma study (Bienvenut et al. 2011) for which
PredAlgo predicted no presequence, except a cTP (Cscore
0.621) for the aspartate aminotransferase (AST2). Although
their plastidial localization was not certified, the authors pro-
posed that at least a fraction of these proteins could be im-
ported into the chloroplast by an unconventional process
(N-terminal transit peptide is either absent or noncanonical).
Reports of such cases start to appear in higher plants as well,
especially not only for outer envelope proteins but also for a
few proteins localized inside the chloroplast (Jarvis 2008;
Armbruster et al. 2009; Ferro et al. 2010).

Performance of PredAlgo on Other Algae

Most green algae belong to Chlorophyta, the sister group of
Streptophyta within the Viridiplantae (green plants) lineage.
This divergence is about a billion year old, and the diversity is
vast among Chlorophyta. We wished to determine whether
PredAlgo worked only in Chlamydomonas or could also be
considered a suitable tool for green algae in general. From an
evolutionary point of view, we also wanted to know whether
the distinctive characteristics of the Chlamydomonas organel-
lar import systems were typical of this highly evolved alga or
had been acquired early in the evolution of Chlorophyta.

We therefore examined the quality of PredAlgo predictions
on the proteomes of six green algal species whose genomes
are publicly available. We chose the multicellular V. carteri, a
close relative of Chlamydomonas that has developed multi-
cellularity but retains a cellular architecture similar to
C. reinhardtii, two unicellular Trebouxiophyceae (Chlorella
variabilis NC64A and Coccomyxa subellipsoidea C-169) and
three more distant relatives belonging to the group
Prasinophyceae (Ostreococcus tauri, Ostreococcus lucimarinus,
and Micromonas pusilla CCMP1545). Because of the scarcity
of intracellular localization data for these algae, we had to
infer subcellular localization from orthology to C. reinhardtii
proteins, i.e., to assume that orthologous protein pairs share
the same intracellular localization. Basic local alignment
search tool (BLAST) comparison between the deduced algal
proteomes and the “best” v4 models for C. reinhardtii was
used to generate lists of reciprocal best hits (RBH). Using
stringent criteria (see Materials and Methods), 20% of the
16,709 C. reinhardtii v4 models could be attributed an ortho-
log in V. carteri (3,379 orthologous pairs) but significantly less
in Chlorella and Coccomyxa (1,671 and 1,682, respectively)
and even fewer in Prasinophyceae (1,333 in Micromonas,
1,099 in O. lucimarinus, and 991 in O. tauri).

PredAlgo was then run on the algal proteomes, and the
predicted localization was compared with that of the
Chlamydomonas ortholog (the predictions for whole nuclear
genes sets in each Chlorophyta species and the lists of ortho-
logs with Chlamydomonas are available at the ProteHome
portal). The overall concordance for orthologous pairs was
good (74–82% identical prediction, depending on the species,
fig. 3A). To better estimate the accuracy of PredAlgo predic-
tions, we restricted our analysis to pairs for which the

localization of the Chlamydomonas protein is known with
certainty, i.e., to the training and benchmark sets (fig. 3B).
As expected, we found an excellent agreement between pre-
dictions in Volvox and in Chlamydomonas (92% correct pre-
diction). Furthermore, we examined carefully a few randomly
picked cases of discrepancy (supplementary table S9, Supple-
mentary Material online) and found that in almost half of the
cases (15 of 32), the Volvox model was most probably wrong,
based on EST or homology data. Thus, we can assume that
the prediction accuracy of PredAlgo in Volvox is even higher
than appears from figure 3. We also performed random
checks of the O. tauri results, where the correlation was
lower. Here, all the 12 cases of discrepancy examined clearly
arose from truncated or otherwise defective gene models.
Despite its paucity in introns, structural annotation problems
thus appear even more prevalent in O. tauri than in Volvox.
We have not performed a similar analysis on the other results
sets, but we assume that here again, a fraction of the predic-
tion errors are due to erroneous gene models and that the
results shown in figure 3 thus underestimate the correctness
of the prediction.

Still, when the compartments are considered individually,
this optimistic conclusion appears to hold well for the chlo-
roplast but less so for the mitochondrion. A high “chloro”
sensitivity was observed for all species, reaching within the
restricted sets a minimum of 82% (Coccomyxa: 46/56),
whereas the “mito” sensitivity was above 60% only for
Volvox and the Trebouxiophytes (Coccomyxa: 17/27)
(fig. 3B). Actually, for the Prasinophytes, less than 20% homo-
logs to the “mito”-sorted Chlamydomonas proteins were ac-
cordingly predicted “mito” (fig. 3A). A higher number were
instead predicted as plastidial. Although the sample size is
small, this bias appears significant. It is symmetrical to the one
observed when Chlamydomonas proteins were predicted
using the plant-based TargetP or Predotar and suggests that
the mitochondrial import system of Prasinophytes recognizes
signals that are more like those of land plants.

Conclusion
PredAlgo, the predictor that we have trained using Chlamy-
domonas proteins of known localization and cleavage site,
appears to perform much better than the other publicly avail-
able programs to predict intracellular localization in this
model alga, especially when it comes to distinguishing plas-
tidial from mitochondrial targeting. We assume that the poor
performance of the other programs, trained mostly on higher
plant sequences, reflect profound differences in the machin-
eries that recognize cTPs and mTPs at the surface of the
organelles (Bruce 2001; Patron and Waller 2007; Kalanon
and McFadden 2008). Actually, it was early on recognized
that algal cTPs harbor characteristics similar to plant mTPs
(von Heijne et al. 1989; Franzén et al. 1990), explaining why a
Chlamydomonas cTP could function as an mTP in yeast (Hurt
et al. 1986). Some Chlamydomonas chloroplast proteins
could be imported in vitro into vascular plant chloroplasts
(Mishkind et al. 1985; Yu et al. 1988). However, in the study
by Mishkind et al. (1985), the Rubisco small subunit was in-
correctly processed, suggesting divergence in the transit
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peptidase specificity. This highlights the need to build specific
predictors for each group of organisms, as proposed recently
for Arabidopsis (Kaundal et al. 2010). When the training set
and domain of application are carefully matched, a simple
neural network model, with no added input from maximum
likelihood or structural analysis, can prove able to correctly
predict targeting for the majority of proteins. PredAlgo cer-
tainly achieves this for Chlorophyceae and Trebouxiophyceae
and possibly for other green algae but apparently not for
Prasinophyceae. Note that the quality of annotation remains
a major limitation to the prediction. With the advent of
highly efficient annotation pipelines such as Augustus
(Stanke et al. 2006), such limitations will progressively disap-
pear, and it will become possible to better evaluate the pre-
dictors and if necessary build new ones for specific algal
groups.

In the case of PredAlgo, our choice of very stringent criteria
for validating experimental N-termini was a cornerstone in
achieving a high predictive power. This, however, resulted in
rather small training sets, especially for the mitochondrion,
which may eventually have limited the ability of the program
to capture the potential diversity in TP/receptor interactions.
In spite of a greater representation of high-abundance pro-
teins in the chloroplast (�40%) and mitochondrion (�75%)
training sets, these sets also include an estimated 20% of
low-abundance proteins. In addition, the lower diversity in
Toc components in green algae compared with higher plants
(Kalanon and McFadden 2008) suggests that chloroplast

import in green algae does not exhibit the same variance of
recognition interactions as in Arabidopsis (Inoue et al. 2010;
Bischof et al. 2011 and references herein). These elements can
explain to a certain extent the performance of PredAlgo in
spite of rather small sets. Anyhow, we hope to be able to
improve PredAlgo in future releases, when more MS/MS data
becomes available from Chlamydomonas or Volvox, to in-
crease the size and diversity of our training sets. Although it
was not its main goal, PredAlgo also gives an indication of the
cleavage site region, but here it clearly needs to be supple-
mented by other tools if highly reliable predictions are desired.
Another question that PredAlgo does not directly address is
that of multiple targeting: in principle, a protein with an
N-terminal extension combining properties of mTPs and
cTP could be imported into both organelles. In Chlamydomo-
nas, RB60 is addressed both to the chloroplast and to the ER
(Levitan et al. 2005), and the pyruvate formate-lyase was re-
ported to be targeted both to the chloroplast and to the
mitochondrion (Atteia et al. 2006).

By providing green algal research with a suitable intracel-
lular targeting prediction tool, our study opens the way to a
systematic survey of the subcellular proteomes in green algae,
in particular on the evolution of metabolic compartmenta-
tion and of regulatory networks. This will require confronta-
tion with experimental evidence and expertized lists (Boyle
and Morgan 2009; Manichaikul et al. 2009; Chang et al. 2011)
integrated into public knowledge databases (ChlamyCyc, May
et al. 2009).

FIG. 3. Correlation of PredAlgo predictions between C. reinhardtii and other algae. PredAlgo was run on C. reinhardtii (JGI-v4) and on six green algal
species: Volvox carteri, Chlorella variabilis, Coccomyxa subellipsoidea, Ostreococcus tauri, Ostreococcus lucimarinus and Micromonas pusilla, applying the
same scoring function as for Chlamydomonas. Matrices are presented for orthologous pairs (A) resulting from whole proteome comparisons or (B)
restricted to cases where the Chlamydomonas protein belonged to our training or benchmarking sets. Each line represents a Chlamydomonas-predicted
compartment and counts the predicted localization of the orthologs. Values in bold are the highest in each line. For each matrix, a global correlation
percentage is presented, calculated as the fraction of pairs with good correspondence relative to the total number of pairs.
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Materials and Methods

Algal Protein Sequences and Annotations

The JGI “best” protein models from versions 2.0, 3.1, and 4.0
were downloaded from the JGI portal (http://genome.JGI-psf
.org/Chlre4/Chlre4.home.html). The Augustus protein sets
Aug5 and Aug9 were downloaded from the Augustus
portal (http://augustus.gobics.de/predictions/chlamydomo-
nas/), the Aug10.2 version set from the Phytozome portal
(http://www.phytozome.net/chlamy - file: Creinhardtii_169_
peptide.fa). Files providing cartographic correspondence be-
tween JGI and Augustus models were provided by Mario
Stanke and Erik Hom (website http://erik.freshboom.com/
chlamy/). These files also provided functional annotations,
which were supplemented when needed by UniprotKB. To
build the training and benchmark sets, the most accurate
gene model was chosen after confrontation with the exper-
imental data. Protein sequences files from other green algae
were downloaded from JGI: Volvox carteri v2, Chlorella varia-
bilis NC64A, Coccomyxa subellipsoidea C-169, Ostreococcus
tauri v2.0, Ostreococcus lucimarinus v2.0, and Micromonas
pusilla CCMP1545 v2.0.

Identification of N-Terminal Peptides from
MS/MS Data

The chloroplastic and mitochondrial training sets were ini-
tially populated by N-terminal peptides of mature proteins
identified from MS/MS data. For the chloroplast set, an orig-
inal list of 111 putative cleavage sites from purified chloro-
plasts was provided by Terashima et al. (2010) and has been
published since then. This list was submitted to further vali-
dation as described in supplementary protocols, Supplemen-
tary Material online.

For the mitochondrial set, a new list of N-terminal peptides
was established for the present work, exploiting MS/MS data
that were generated in the course of a mitochondrial
proteomic study (Atteia et al. 2009). Additional MS/MS
data were generated from a new preparation of whole mito-
chondria, which was enriched for N-terminal peptides using a
protocol adapted from previous articles (Gevaert et al. 2003;
McDonald et al. 2005). Briefly, a whole mitochondria sample
was subjected to reduction/alkylation of cysteines followed by
acetylation of all free amino groups with a 100-fold molar
excess of acetic anhydride (ACS reagent-Fisher). Tryptic di-
gestion at 37�C was carried out overnight with a protease/
protein ratio of 1:100 (w/w). All newly created free amino
groups were N-biotinylated with 35-fold excess of NHS-LC-
Biotin (Pierce). Internal peptides (biotinylated) were sepa-
rated from N-terminal peptides (not biotinylated) through
streptavidin sepharose resin (“High Performance”, GE
Healthcare). Appropriate quenching and desalting steps
were inserted. The MS data acquisition was as previously de-
scribed (nano-LC system directly coupled to Q-ToF Ultima
mass spectrometer (Atteia et al. 2009).

The MS/MS spectra were searched against a C. reinhardtii
protein database (JGI-v2 models plus an ACE database built
from the 20021010 assembly, as in Atteia et al. 2009) using

Mascot 2.0 (www.matrixscience.com). Mascot parameters
were as already described (Atteia et al. 2009) except that
two miscleavages were allowed and the enzyme parameter
set to “semi-tryptic.” “Semi-tryptic” means that in addition
to peptides with tryptic consensus at both ends, peptides
with a nontryptic cleavage site at one terminus (N or C)
were allowed. For the N-termini-enriched preparation, up
to 6 miscleavages were allowed as the acetylation of free
side-chain amino groups prevented tryptic cleavage after
lysine residues. Acetylation at the N-terminus of mature pro-
teins and at N-termini of internal peptide-spectrum matches
(PSM) was allowed (for the enriched preparation, (K)-acety-
lation, (C)-carbamidomethylation, and (K)- or (N-term)-bio-
tinylation were also selected). The IRMa software was used for
the automatic validation of Mascot raw identification results
(Dupierris et al. 2009), PSM were filtered with a threshold
peptide score of 20. Candidate N-termini were established
from the assignment of MS/MS spectra to peptides that
lack a tryptic consensus site at their N-terminus and lie
within the first 150 residues of the protein (conditions
where one can assume that the N-terminus results from
cleavage of a transit peptide). In the next selection step,
only the most upstream valid PSM was considered for each
protein and manually inspected for validation. At last, we
checked through the JGI browser (http://genome.JGI-psf
.org/Chlre4/Chlre4.home.html, “PMAP4” track) that no
other peptide had been identified by other groups (Wagner
et al. 2004; Pazour et al. 2005; Schmidt et al. 2006; Wagner
et al. 2006; May et al. 2008; Wagner et al. 2008; Boesger et al.
2009) upstream in the protein sequence. We wondered
whether tryptic peptides possibly generated from the
presequence of abundant organellar-targeted proteins could
lead us to miss identification of their cleavage sites by apply-
ing this “most upstream PSM” rule. However, we considered
that 1) the degradation of the transit sequences occurs rapidly
after cleavage and 2) our using purified chloroplast or mito-
chondrial fractions should efficiently remove cytosolic precur-
sors, as discussed by Bischof et al. (2011). The safe “most
upstream PSM” rule was therefore fully enforced, to
strengthen the accuracy of the final training sets.

Neural Networks
Input and Output Vectors
Feedforward neural networks are constituted by successive
interconnected layers of logistic functions, each of them being
a “node” of the network. The first layer has the dimension of
the input vector or matrix, and receives the data. Then each
node within the following successive layers receives as input
the outputs from the nodes of the preceding layer, sums
them with different weights on each connection, and delivers
as its own output the result of the logistic function calculation
on the weighed sum. This process is repeated until the final
(ouput) layer is reached.

Neural network design and training were achieved using
the SNNS software with JavaSNNS software (http://www.ra.cs
.uni-tuebingen.de/software/JavaNNS/), which is based on the
Stuttgart Neural Network Simulator package (Zell et al. 1991).
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The first 150 AA of each sequence in the training set was first
cut into a set of 132 overlapping 19-residue windows. Each of
these subsequences was represented by an input matrix, with
19 rows (one per position) and 26 columns (latin alphabet,
with the 20 columns that correspond to an amino acid in
standard notation being truly active), where 1 encoded pres-
ence and 0 encoded absence. Other schemes were tried
where physicochemical properties of the residues (hydropho-
bicity, polarity, charge, and Van der Waals volume) were
encoded in fewer columns, but they proved less effective
(data not shown). These subsequences were meant to be
fed to the neural network and produce as an output a “pre-
dicted” triplet (M, C, SP), i.e., a three-dimensional score where
each figure represents the probability for that subsequence to
be part of a presequence targeting the protein toward the
mitochondrion, the chloroplast, or the secretory pathway.

For training, the “true” triplets were set as follows. If all the
19 residues were inside a transit peptide, the subsequence was
given a score of 1 for the dimension corresponding to that
organelle and 0 for the other dimensions. If the subsequence
spanned the cleavage site, the score for that dimension was
computed as the number of residues that lied within the
transit peptide, divided by 19. Thus, subsequences entirely
within the mature protein received the score (0,0,0) as did
subsequences from cytosolic proteins. As a result, plotting the
score triplets along the sequence of a targeted protein re-
sulted in a “step/ramp”-shaped output for the dimension
corresponding to the destination organelle, starting at 1
and decreasing from 1 to 0 over the last 19 residues of the
transit peptide.

Learning and Processing
In neural networks, the learning process is initiated by ran-
domly assigning parameters (weights) to the different nodes.
Then the input vectors are sequentially read, and the gener-
ated outputs (the “predicted” scores) are compared with the
“true” scores. At each step, the difference between “pre-
dicted” and “true” values is used to actuate the weights, in
our case with a standard optimization algorithm called “error
back-propagation.” Actuation is moderated by a fractional
parameter (“learning rate”) to avoid that the network be
blocked in a poorly optimized state after a few data process-
ing events. In one cycle, all the input vectors of the data set are
fed to the network. Afterward, their order is modified in a
random way (“shuffling” mode) before initiating the next
cycle. This process is repeated for a certain number of
times, leading to a progressive lowering of the SSE on outputs.
As a general rule, increasing the complexity (number of pa-
rameters) or learning time (number of optimization cycles)
will enhance the ability of the estimator to closely match the
training output set but will increase the risk that it loses its
predictive potential outside the training set (overlearning),
especially if there is some occurrence of noise or errors in
the calibration data. To optimize network design, the original
training set of subsequences was randomly divided into a
preliminary training set (80% of the total) and a validation
set (the remaining 20%) to use as test database for prediction
efficiency and determination of optimal learning time.

Different learning parameters (minimal acceptable error,
learning rate, and number of cycles) and network sizes
(number of nodes in the intermediate layer) were tested to
find the optimal configuration, giving the best overall score
on the validation set. Learning was then repeated with these
parameters using the entire set.

Prediction of Protein Targeting
Results for the subsequences were used to compute a target-
ing prediction for the proteins themselves. To give more
weight to the start of the sequence, we calculated the average
network outputs for subsequences starting at positions 1–10,
1–20, 1–30, 1–40, and 1–50 and defined the output for the
protein as the sum of these values. The scores were thus
between 0 and 5 for each compartment. When the three
scores were below a certain cutoff, the protein was assigned
to the “Other” category, otherwise to the compartment with
the highest score. These cutoffs were set to 0.42 for the mito,
0.41 for the chloro, and 0.14 for the SP scores. To establish
these cutoffs, we used an independent benchmark set,
completely distinct from that used in training. This set was
constituted by 577 proteins (171, 75, 240, and 91 for each of
the other, mito, chloro, and SP compartments, respectively)
for which the gene model and subcellular localization were
certain but for which mature N-terminus information was
lacking or not fully ascertained. Individual score values were
compared with protein localizations, and thresholds
for targeting prediction were then adjusted to maximize
the number of correctly sorted proteins within the bench-
mark set.

Comparison with Other Predictors
We used TargetP (http://www.cbs.dtu.dk/services/TargetP/)
(Emanuelsson et al. 2000) with the “winner takes all” setting
and the “Plant” option selected; PREDOTAR 1.03 (http://urgi.
versailles.inra.fr/predotar/predotar.html) (Small et al. 2004);
WoLF PSORT (http://wolfpsort.org/) (Horton et al. 2007)
with “Plant” option selected; MultiLoc2 (http://www-abi
.informatik.uni-tuebingen.de/Services/MultiLoc2) (Blum
et al. 2009) with MultiLoc2-LowRes (Plant), “5 localizations”
selected; Protein Prowler V1.2 (http://pprowler.imb.uq.edu
.au/) (Bodén and Hawkins 2005) with “Plant” selected; and
SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) (Nielsen
et al. 1997; Bendtsen et al. 2004) with “Eukaryotes,” “Neural
networks” selected, and “truncation” at 100 residues. As
WoLF PSORT and MultiLoc2 predict more than four cellular
compartments, their outputs were combined as the follow-
ing: for WoLF PSORT, the “E.R.,” “extr,” and “golg” outputs
were grouped as SP and the “cyto,” “nucl,” and “cysk” as
Other. For MultiLoc2, the “nuclear” and “cytoplasmic” out-
puts were grouped as Other. Also, the “pero,” “vacu,” “plas,”
and dual-outputs (e.g., “chlo-mito”) of WoLF PSORT and one
“pero” output of Protein Prowler were not taken into ac-
count in the metrics.

The following metrics were used for the evaluation of soft-
ware performances:

Sensitivity ¼
TP

TP+FN
ð1Þ
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Precision ¼
TP

TP+FP
ð2Þ

Accuracy ¼
TP+TN

ðTP+FNÞ+ðTN+FPÞ
ð3Þ

Matthedws Correlation Coefficient ðMCCÞ

¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ

p

ð4Þ

(Matthews 1975) where TP = true positives, TN = true nega-
tives, FP = false positives, and FN = false negatives. For each
program, “overall” metrics were calculated as the weighted
average of the values for each localization output.

Miscellaneous
Sequence Analysis
Logoplots of AA distribution were generated with WebLogo
3.1 (http://weblogo.threeplusone.com/) (Crooks et al. 2004).
Secondary structures were computed with a standalone ver-
sion of Psipred v2.4 (Jones 1999) using a filtered (PSI-BLAST
“pfilt”) swissprot database (release 2010-10-05). The
“smoothing” parameter was set at 1 and the Helix and
Strand Decision constants both set at 1.0. The MEME suite
(v4.6.1) at http://meme.sdsc.edu/meme/cgi-bin/meme.cgi
(Bailey and Elkan 1994) was used to capture motifs within
the presequences.

Computing Algal Orthologs of C. reinhardtii Proteins
Putative orthologs of C. reinhardtii JGI-v4 models were
searched within Volvox carteri, Chlorella variabilis NC64A,
Coccomyxa subellipsoidea C-169, Ostreococcus tauri,
Ostreococcus lucimarinus, and Micromonas pusilla sequences
as BLAST RBH. The blastp program was run with an E-value
threshold of 10 e�5 and with the �F “m S” option as in
Moreno-Hagelsieb and Latimer (2008). RBH were constituted
by pairs of sequences that were the highest bit-score hit of
each other. Because we wanted to eliminate the gene models
with uncertain N-termini, we excluded RBH where the align-
ment start positions differed by more than 10 between
Chlamydomonas and the other alga.

Software Availability
The PredAlgo software is downloadable from the ProteHome
proteomic portal (http://www.grenoble.prabi.fr/protehome/).
The user may also download the following data: 1) data sets
used in the construction and evaluation of PredAlgo1.0; 2)
PSSM matrices of the MEME motifs generated from the chlo-
roplast and mitochondrial presequences; 3) PredAlgo1.0 pre-
dictions for whole nuclear genes sets in Chlamydomonas; 4)
PredAlgo1.0 predictions for whole nuclear genes sets in other
Chlorophyta; and 5) orthologous pairs between Chlamydo-
monas and other Chlorophyta with associated PredAlgo1.0
predictions. A PredAlgo webserver is available at http://
giavap-genomes.ibpc.fr/predalgo.

Supplementary Material
Supplementary protocols, figures S1–S3, and tables S1–S9 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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